Anabolic effects of a G protein-coupled receptor kinase inhibitor expressed in osteoblasts.

نویسندگان

  • Robert F Spurney
  • Patrick J Flannery
  • Sanford C Garner
  • Krairerk Athirakul
  • Shiguang Liu
  • Farshid Guilak
  • L Darryl Quarles
چکیده

G protein-coupled receptors (GPCRs) play a key role in regulating bone remodeling. Whether GPCRs exert anabolic or catabolic osseous effects may be determined by the rate of receptor desensitization in osteoblasts. Receptor desensitization is largely mediated by direct phosphorylation of GPCR proteins by a family of enzymes termed GPCR kinases (GRKs). We have selectively manipulated GRK activity in osteoblasts in vitro and in vivo by overexpressing a GRK inhibitor. We found that expression of a GRK inhibitor enhanced parathyroid hormone (PTH)/PTH-related peptide (PTHrP) receptor-stimulated cAMP generation and inhibited agonist-induced phosphorylation of this receptor in cell culture systems, consistent with attenuation of receptor desensitization. To determine the effect of GRK inhibition on bone formation in vivo, we targeted the expression of a GRK inhibitor to mature osteoblasts using the mouse osteocalcin gene 2 (OG2) promoter. Transgenic mice demonstrated enhanced bone remodeling as well as enhanced urinary excretion of the osteoclastic activity marker dexoypyridinoline. Both osteoprotegrin and OPG ligand mRNA levels were altered in calvaria of transgenic mice in a pattern that would promote osteoclast activation. The predominant effect of the transgene, however, was anabolic, as evidenced by an increase in bone density and trabecular bone volume in the transgenic mice compared with nontransgenic littermate controls.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass.

Osteoblasts are essential for maintaining bone mass, avoiding osteoporosis, and repairing injured bone. Activation of osteoblast G protein-coupled receptors (GPCRs), such as the parathyroid hormone receptor, can increase bone mass; however, the anabolic mechanisms are poorly understood. Here we use "Rs1," an engineered GPCR with constitutive G(s) signaling, to evaluate the temporal and skeletal...

متن کامل

Phytoestrogens by inhibiting the non-classical oestrogen receptor, overcome the adverse effect of bisphenol A on hFOB 1.19 cells

Objective(s): Since bisphenol A (BPA) induces bone loss and phytoestrogens enhance the osteoblastogenesis by binding to the non-classical and classical oestrogen receptors, respectively, the present study was aimed to observe the osteoprotective effect of phytoestrogens on BPA-induced osteoblasts in hFOB 1.19 cells.Materials and Methods:...

متن کامل

Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways.

Parathyroid hormone (PTH)-related peptide (PTHrP) can modulate the proliferation and differentiation of a number of cell types including osteoblasts. PTHrP can activate a G protein-coupled PTH/PTHrP receptor, which can interface with several second-messenger systems. In the current study, we have examined the signaling pathways involved in stimulated type I collagen and alkaline phosphatase exp...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis.

Bone is accrued and maintained primarily through the coupled actions of bone-forming osteoblasts and bone-resorbing osteoclasts. Cumulative in vitro studies indicated that proline-rich tyrosine kinase 2 (PYK2) is a positive mediator of osteoclast function and activity. However, our investigation of PYK2-/- mice did not reveal evidence supporting an essential function for PYK2 in osteoclasts eit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 109 10  شماره 

صفحات  -

تاریخ انتشار 2002